Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Section 10.10 - The Binomial Series and Applications of Taylor Series - Exercises 10.10 - Page 633: 44

Answer

$\ln (\dfrac{3}{2}); -1 \leq x \leq 1$

Work Step by Step

Recall the Taylor series for $\ln (1+x)=x-\dfrac{ x^2}{2}+\dfrac{x^3}{3}-....$ ; $-1 \leq x \leq 1$ or, $ \dfrac{1}{2} - \dfrac{1}{2 \cdot 2^2} + \dfrac{1}{3 \cdot 2^3}-....$ or, $ =( \dfrac{1}{2})-( \dfrac{1}{2}) ( \dfrac{1}{2})^2+( \dfrac{1}{3})( \dfrac{1}{2})^3-( \dfrac{1}{4})( \dfrac{1}{2})^4+....$ or, $= \ln (1+\dfrac{1}{2})$ or, $=\ln (\dfrac{3}{2}); -1 \leq x \leq 1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.