Answer
$e=1+1+\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...$
Work Step by Step
As we know that $e^x=1+x+\dfrac{x}{2!}-.....+\dfrac{x^{n}}{(n)!}$
Then, we have
$e^{(1)}=1+1+\dfrac{1}{2!}+.....+\dfrac{1}{n!}$
Hence,
$e=1+1+\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...$