Answer
$ x^2 e^{-2x}$
Work Step by Step
Recall the Taylor series for : $ e^x=1+x+\dfrac{x^2}{2!}+.....\dfrac{x^n}{n!}...; |x| \lt \infty $
Now,
$=x^2-2x^3+\dfrac{2^2 x^4}{2!}-\dfrac{x^2}{2!}-\dfrac{2^3 x^5}{3!}..$
or, $=x^2(1-2x+\dfrac{(2x)^2}{2!}-\dfrac{(2x)^3}{3!}+....)$
or, $=x^2 e^{-2x}$