Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Section 10.10 - The Binomial Series and Applications of Taylor Series - Exercises 10.10 - Page 633: 50

Answer

$ x^2 e^{-2x}$

Work Step by Step

Recall the Taylor series for : $ e^x=1+x+\dfrac{x^2}{2!}+.....\dfrac{x^n}{n!}...; |x| \lt \infty $ Now, $=x^2-2x^3+\dfrac{2^2 x^4}{2!}-\dfrac{x^2}{2!}-\dfrac{2^3 x^5}{3!}..$ or, $=x^2(1-2x+\dfrac{(2x)^2}{2!}-\dfrac{(2x)^3}{3!}+....)$ or, $=x^2 e^{-2x}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.