Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Section 10.10 - The Binomial Series and Applications of Taylor Series - Exercises 10.10 - Page 633: 35

Answer

$-1$

Work Step by Step

$\lim\limits_{x \to \infty} x^2 (e^{1/x^2}-1)=\lim\limits_{x \to \infty} x^2 (-1+e^{(\frac{1}{x^2})}) $ or, $=\lim\limits_{x \to \infty} x^2 [-1+1-\dfrac{1}{x^2}+\dfrac{1}{2x^4}-\dfrac{1}{6x^6}+.....]$ or, $=\lim\limits_{x \to \infty} (-1) + \lim\limits_{x \to \infty} \dfrac{1}{2x^2}-\lim\limits_{x \to \infty} \dfrac{1}{6x^4}+....$ So, $\lim\limits_{x \to \infty} x^2 (e^{1/x^2}-1)=-1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.