Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Section 10.10 - The Binomial Series and Applications of Taylor Series - Exercises 10.10 - Page 633: 10

Answer

$x-\dfrac{1}{3}x^2+\dfrac{2}{9}x^3-\dfrac{14}{81}x^4$

Work Step by Step

Apply Binomial series formula to find the first four terms. $(1+x)^m=1+\Sigma_{k=1}^\infty \dbinom{m}{k}x^k$ and $\dbinom{m}{k}=\dfrac{m(m-1)(m-2).....(m-k+1)}{k!}$ Thus, we have $\dfrac{x}{\sqrt[3]{1+x}}=x (1+x)^{-1/3}=x[1+\dfrac{-1}{3}x+\dfrac{(\dfrac{-1}{3})(-\dfrac{4}{3})x^2}{2!}+\dfrac{(\dfrac{-1}{3})(-\dfrac{4}{3})(-\dfrac{7}{3})x^3}{3!}+...]=x-\dfrac{1}{3}x^2+\dfrac{2}{9}x^3-\dfrac{14}{81}x^4+..$ Hence, we have the first four terms:: $x-\dfrac{1}{3}x^2+\dfrac{2}{9}x^3-\dfrac{14}{81}x^4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.