Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Section 10.10 - The Binomial Series and Applications of Taylor Series - Exercises 10.10 - Page 633: 40

Answer

$$1$$

Work Step by Step

Recall the Taylor series for $\ln (1+x)=x-\dfrac{ x^2}{2}+\dfrac{x^3}{3}-....$ and $\sin x= x-\dfrac{x^3}{3!}+\dfrac{ x^5}{5!}-....$ $\lim\limits_{x \to 0} \dfrac{\ln (1+x^3)}{x \sin x^2}= \dfrac{\lim\limits_{x \to 0}[x^3-\dfrac{x^6}{2}+\dfrac{x^9}{3} -....]}{\lim\limits_{x \to 0}[x^3-\dfrac{x^7}{6}+\dfrac{x^{11}}{120} -...]} $ or, $=\dfrac{1-0+0-...}{1-0+0-.....}$ or, $\lim\limits_{x \to 0} \dfrac{\ln (1+x^3)}{x \sin x^2}=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.