Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Section 10.10 - The Binomial Series and Applications of Taylor Series - Exercises 10.10 - Page 633: 38

Answer

$4$

Work Step by Step

Taylor series for $\ln (1+x)=x-\dfrac{ x^2}{2}+\dfrac{x^3}{3}-....$ $\lim\limits_{x \to 2} \dfrac{x^2-4}{\ln (x-1)}=\lim\limits_{x \to 2} \dfrac{(x-2)(x+2)}{(x-2)-\dfrac{ (x-2)^2}{2}+\dfrac{(x-2)^3}{3}-....)} $ or, $ \dfrac{ \lim\limits_{x \to 2} [(x-2)(x+2)] }{\lim\limits_{x \to 2} (x-2)-\lim\limits_{x \to 2} \dfrac{ (x-2)^2}{2}+\lim\limits_{x \to 2} \dfrac{(x-2)^3}{3}-...)}$ or, $=\dfrac{2+2}{1-0+0...}$ or, $\lim\limits_{x \to 2} \dfrac{x^2-4}{\ln (x-1)} =4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.