Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Section 10.10 - The Binomial Series and Applications of Taylor Series - Exercises 10.10 - Page 633: 37

Answer

$2$

Work Step by Step

Consider Taylor series for $\cos x $ as follows: $\cos x=1-\dfrac{ x^2}{2!}+\dfrac{x^4}{4!}-....$ $\lim\limits_{x \to 0} \dfrac{\ln (1+x^2)}{1-\cos x}=\lim\limits_{x \to 0} \dfrac{(x^2-x^4/2+x^6/3)}{1-(1-\dfrac{ x^2}{2!}+\dfrac{x^4}{4!}-....)}\\ \dfrac{\lim\limits_{x \to 0} (x^2-x^4/2+x^6/3)}{\lim\limits_{x \to 0}1-(1-\dfrac{ x^2}{2!}+\dfrac{x^4}{4!}-....)}\\= \dfrac{\lim\limits_{x \to 0}(x^2-x^4/2+x^6/3)}{\lim\limits_{x \to 0}[1-(1-\dfrac{ x^2}{2!}+\dfrac{x^4}{4!}-....)]}\\=2 !$ or, $\lim\limits_{x \to 0} \dfrac{\ln (1+x^2)}{1-\cos x}=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.