Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Section 10.10 - The Binomial Series and Applications of Taylor Series - Exercises 10.10 - Page 633: 36

Answer

$1$

Work Step by Step

Consider the Taylor series for $\sin x $ as follows: $\sin x= x-\dfrac{ x^3}{3!}+\dfrac{x^5}{5!}-....$ $\lim\limits_{x \to \infty}(x+1) \sin (\dfrac{1}{x+1})=\lim\limits_{x \to \infty}(x+1) \times [-\dfrac{1}{3!(x+1)^3}+...]\\=\lim\limits_{x \to \infty} (1)- \lim\limits_{x \to \infty} \dfrac{1}{3!(x+1)^2}+\lim\limits_{x \to \infty} \dfrac{1}{5!(x+1)^4}-...)$ So, $\lim\limits_{x \to \infty}(x+1) \sin (\dfrac{1}{x+1})=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.