Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Section 10.10 - The Binomial Series and Applications of Taylor Series - Exercises 10.10 - Page 633: 24

Answer

$| Error| \lt 0.000004960$

Work Step by Step

Integrate the integral with respect to $ x $ as follows: $\int_0^{1} \cos \sqrt {t} \space dt=\int_0^{1} [1-\dfrac{t}{2}+\dfrac{t^{2}}{4 !}-...] \space dt \\=[t-\dfrac{t^2}{4}+\dfrac{t^{3}}{3 \cdot 4 !}-...]_0^{1} ....$ Now, $| Error| \lt \dfrac{1}{5\cdot 8 !} \approx 0.000004960$ or, $| Error| \lt 0.000004960$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.