Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Section 10.10 - The Binomial Series and Applications of Taylor Series - Exercises 10.10 - Page 633: 33

Answer

$\dfrac{1}{3}$

Work Step by Step

We know that $\tan^{-1} y= y-\dfrac{y^3}{3}+\dfrac{y^5}{5}-....$ $\lim\limits_{y \to 0}\dfrac{y-\tan^{-1} y}{y^3}=\lim\limits_{y \to 0} \dfrac{[y-(y-\dfrac{y^3}{3}+\dfrac{y^5}{5}-....)]}{y^3}\\=\lim\limits_{y \to 0} \dfrac{\dfrac{y^3}{3}- \dfrac{y^5}{5}+...}{y^3}\\= \lim\limits_{y \to 0} \dfrac{1}{3}-\lim\limits_{y \to 0} \dfrac{y^2}{5}+\lim\limits_{y \to 0} \dfrac{y^4}{7}-....]$ So, $\lim\limits_{y \to 0}\dfrac{y-\tan^{-1} y}{y^3}=\dfrac{1}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.