Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Section 10.10 - The Binomial Series and Applications of Taylor Series - Exercises 10.10 - Page 633: 34

Answer

$-\dfrac{1}{6}$

Work Step by Step

$\lim\limits_{y \to 0}\dfrac{\tan^{-1} y -\sin y}{y^3 \cos y}=\lim\limits_{y \to 0} \dfrac{(y-\dfrac{y^3}{3!}+\dfrac{y^5}{5!}-....)-(y-\dfrac{y^3}{3}+\dfrac{y^5}{5}-....)}{y^3}\\=\lim\limits_{y \to 0} \dfrac{\dfrac{-y^3}{6}+ \dfrac{23y^5}{5!}+...}{y^3 \cos y}\\=\dfrac{\lim\limits_{y \to 0} (-\dfrac{1}{6})+ \lim\limits_{y \to 0} \dfrac{23y^2}{5!}-...}{ \lim\limits_{y \to 0} \cos y}$ So, $\lim\limits_{y \to 0}\dfrac{\tan^{-1} y -\sin y}{y^3 \cos y}=-\dfrac{1}{6}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.