Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Section 10.10 - The Binomial Series and Applications of Taylor Series - Exercises 10.10 - Page 633: 25

Answer

$| Error| \lt 0.000013$

Work Step by Step

Integrate the integral with respect to $ x $ as follows: $ f(x)=\int_0^{x} \sin t^2 dt \\=\int_0^{x} [t^2-\dfrac{t^6}{3 !}+\dfrac{t^{10}}{5!}-...] \space dt \\=\dfrac{x^3}{3}-\dfrac{x^{7}}{7 \cdot 3 !}+\dfrac{x^{11}}{11 \cdot 5!}- ....$ Now, $| Error| \lt \dfrac{1}{15\cdot 7 !} \approx 0.000013$ or, $| Error| \lt 0.000013$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.