Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Section 10.10 - The Binomial Series and Applications of Taylor Series - Exercises 10.10 - Page 633: 39

Answer

$\dfrac{3}{2}$

Work Step by Step

Recall the Taylor series for $\cos x=1-\dfrac{ x^2}{2!}+\dfrac{x^4}{4!}-....$ and $\sin x= x-\dfrac{x^3}{3!}+\dfrac{ x^5}{5!}-....$ $\lim\limits_{x \to 0} \dfrac{\sin x^2}{1- \cos 2x}=\lim\limits_{x \to 0} \dfrac{3x^2-(\dfrac{9}{2}) x^6+(\dfrac{81}{40}) x^{10} -....}{2x^2-(2/3) x^4 +(4/45) x^6-...} $ or, $= \dfrac{ \lim\limits_{x \to 0}[3x^2-(\dfrac{9}{2}) x^6+(\dfrac{81}{40}) x^{10} -....]}{ \lim\limits_{x \to 0}[2x^2-(2/3) x^4 +(4/45) x^6-...]} $ or, $ =\dfrac{3-0+0-...}{2-0+0-.....}$ or, $\lim\limits_{x \to 0} \dfrac{\sin x^2}{1- \cos 2x}=\dfrac{3}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.