Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.1 Integration by Parts - Exercises - Page 395: 56

Answer

$$\frac{\pi }{4}-\frac{1}{2}\ln \left(2\right)$$

Work Step by Step

Given $$\int_{0}^{1} \tan ^{-1} x d x$$ Let \begin{align*} u&= \tan^{-1}x\ \ \ \ \ \ \ dv= dx\\ du&=\frac{1}{1+x^2}dx\ \ \ \ \ \ v=x \end{align*} Then \begin{align*} \int_{0}^{1} \tan ^{-1} x d x&= x\tan^{-1}x\bigg|_{0}^{1}-\int_{0}^{1} \frac{x}{1+x^2}dx\\ &= x\tan^{-1}x-\frac{1}{2}\ln (1+x^2)\bigg|_{0}^{1}\\ &=\frac{\pi }{4}-\frac{1}{2}\ln \left(2\right) \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.