Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.1 Integration by Parts - Exercises - Page 395: 43

Answer

$$ 2xe^{\sqrt{x}} -4[\sqrt{x}e^{\sqrt{x}}-e^{\sqrt{x}}]+C$$

Work Step by Step

Given $$\int \sqrt{x}e^{\sqrt{x}} dx$$ Let $$z^2 = x\ \ \ \ \to\ \ \ 2zdz= dx$$ Then $$ \int 2z^2e^{z} dz $$ Let \begin{align*} u&=2z^2 \ \ \ \ \ \ \ dv=e^zdz\\ du&=4zdz \ \ \ \ \ \ v= e^z \end{align*} Then \begin{align*} \int \sqrt{x}e^{\sqrt{x}} dx&=\int 2z^2e^{z} dz\\ &= 2z^2 e^z -4\int ze^zdz \\ \text{integrate by parts again }\\ &= 2z^2 e^z -4[ze^z-e^z]+C\\ &= 2xe^{\sqrt{x}} -4[\sqrt{x}e^{\sqrt{x}}-e^{\sqrt{x}}]+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.