Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.1 Integration by Parts - Exercises - Page 395: 35

Answer

$$2 e^{\sqrt{x}}(\sqrt{x}-1)+C $$

Work Step by Step

Given $$\int e^{\sqrt{x}} d x $$ Let $u=x^{1/2}\ \ \ \ \ du = \frac{1}{2\sqrt{x}}dx$, then \begin{aligned} \int e^{\sqrt{x}} d x &=\int e^{u} \cdot 2 u d u \\ &=2 \int u e^{u} d u \end{aligned} Let \begin{align*} u&=u \ \ \ \ \ \ \ dv=e^udu\\ du&=du\ \ \ \ \ \ v =e^u \end{align*} Then \begin{aligned} 2 \int u e^{u} d u &=2\left[u \cdot e^{u}-\int 1 \cdot e^{u} d u\right] \\ &=2 u e^{u}-2 \int e^{u} d u \\ &=2 u e^{u}-2 e^{u}+C \\ &=2 \sqrt{x} e^{\sqrt{x}}-2 e^{\sqrt{x}}+C \\ &=2 e^{\sqrt{x}}(\sqrt{x}-1)+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.