Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.1 Integration by Parts - Exercises - Page 395: 28

Answer

\begin{aligned} \int x\ \ 5^{x}\ d x = \frac{\ 5^x}{\ln 5}(x- \frac{ 1}{\ln 5})+C \\ \end{aligned}

Work Step by Step

Given $$ \int x\ \ 5^{x}\ d x $$ Use integration by parts: $$ u= x \Rightarrow du= dx $$ $$ dv= 5^x \ dx \Rightarrow v= \frac{5^x}{\ln 5} $$ So, we get \begin{aligned} I&=\int x\ \ 5^{x}\ d x\\ &=uv - \int vdu\\ &= \frac{x\ 5^x}{\ln 5}-\int \frac{5^x}{\ln 5}dx\\ &= \frac{x\ 5^x}{\ln 5}- \frac{1}{\ln 5}\int 5^x dx\\ &= \frac{x\ 5^x}{\ln 5}- \frac{ 5^x}{(\ln 5)^2}+C \\ &= \frac{\ 5^x}{\ln 5}(x- \frac{ 1}{\ln 5})+C \\ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.