Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.1 Integration by Parts - Exercises - Page 395: 18

Answer

$$\int e^{3x}cos4x\,dx=\frac{1}{25}e^{3x}(4sin4x+3cos4x)+C$$

Work Step by Step

$$\int e^{3x}cos4x\,dx=\frac{1}{4}e^{3x}sin4x+\frac{3}{16}e^{3x}cos4x-\frac{9}{16}\int e^{3x}cos4x\,dx$$ $$\frac{25}{16}\int e^{3x}cos4x\,dx=\frac{1}{16}e^{3x}(4sin4x+3cos4x)$$ $$\int e^{3x}cos4x\,dx=\frac{1}{25}e^{3x}(4sin4x+3cos4x)+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.