Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.1 Integration by Parts - Exercises - Page 395: 31

Answer

\begin{aligned} \int x^{2} \cosh x\ d x = x^2\sinh x-2x \cosh x+2 \sinh x+C\\ \end{aligned}

Work Step by Step

Given $$\int x^{2} \cosh x\ d x $$ So, we have \begin{array}{|c c c|}\hline Differentiation && {Integration} \\ \hline x^2 & + & \cosh x \\ &\searrow&\\ \hline 2x & - & \sinh x \\ &\searrow&\\ \hline 2 &+ & \cosh x \\ &\searrow&\\ \hline 0 & & \sinh x \\ &&\\ \hline \end{array} Therefore \begin{aligned} I&=\int x^{2} \cosh x\ d x\\ &= x^2\sinh x-2x \cosh x+2 \sinh x+C\\ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.