Answer
$$\int e^{-x}sin\,x\,dx=-\frac{e^{-x}}{2}(cos\,x+sin\,x)+C$$
Work Step by Step
$$\int e^{-x}sin\,x\,dx=-e^{-x}cos\,x-\int e^{-x}cos\,x\,dx$$
$$=-e^{-x}cos\,x-(e^{-x}sin\,x+\int e^{-x}sin\,x\,dx)$$
$$2\int e^{-x}sin\,x\,dx=-e^{-x}cos\,x-e^{-x}sin\,x$$
$$\int e^{-x}sin\,x\,dx=-\frac{e^{-x}}{2}(cos\,x+sin\,x)+C$$