Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.1 Integration by Parts - Exercises - Page 395: 36

Answer

$$\frac{1}{2} x^2 e^{x^2}-\frac{1}{2} e^{x^2}+C$$

Work Step by Step

Given $$\int x^3e^{x^2} d x $$ Let $u=x^{2}\ \ \ \ \ du = 2xdx$, then \begin{aligned} \int x^3e^{x^2} d x&=\frac{1}{2}\int ue^{u} du \end{aligned} Let \begin{align*} u&=u \ \ \ \ \ \ \ dv=e^udu\\ du&=du\ \ \ \ \ \ \ v =e^u \end{align*} Then \begin{aligned} \int x^3e^{x^2} d x&=\frac{1}{2}\int ue^{u} du\\ &= \frac{1}{2}\left[u \cdot e^{u}-\int e^{u} d u\right] \\ &=\frac{1}{2} u e^{u}-\frac{1}{2} e^{u}+C \\ &=\frac{1}{2} x^2 e^{x^2}-\frac{1}{2} e^{x^2}+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.