Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.1 Integration by Parts - Exercises - Page 395: 53

Answer

$$\frac{1}{\ln 3}\left(3-\frac{2}{\ln 3}\right)$$

Work Step by Step

Given $$\int_{0}^{1} x 3^{x} d x$$ Let \begin{align*} u&= x\ \ \ \ \ \ \ \ \ dv=3^xdx\\ du&=dx\ \ \ \ \ \ \ \ v=\frac{1}{\ln 3} 3^x \end{align*} Then \begin{align*} \int_{0}^{1} x 3^{x} d x&=\frac{x}{\ln 3} 3^x \bigg|_{0}^{1}-\frac{1}{\ln 3}\int_{0}^{1} 3^xdx\\ &=\frac{x}{\ln 3} 3^x-\frac{1}{(\ln 3)^2} 3^x \bigg|_{0}^{1}\\ &= \frac{1}{\ln 3}\left(3-\frac{2}{\ln 3}\right) \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.