Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.1 Integration by Parts - Exercises - Page 395: 54

Answer

$$ \frac{-2}{\pi^2 } $$

Work Step by Step

Given $$\int_{0}^{1} x \cos (\pi x) d x$$ Let \begin{align*} u&= x\ \ \ \ \ \ \ \ \ dv=\cos (\pi x)dx\\ du&=dx\ \ \ \ \ \ \ \ v=\frac{1}{\pi} \sin (\pi x) \end{align*} Then \begin{align*} \int_{0}^{1} x \cos (\pi x) d x&= \frac{x}{\pi} \sin (\pi x)\bigg|_{0}^{1}-\frac{1}{\pi } \int_{0}^{1} \sin (\pi x) d x \\ &= \frac{x}{\pi} \sin (\pi x)+\frac{1}{\pi^2 } \cos (\pi x)\bigg|_{0}^{1}\\ &= \frac{-2}{\pi^2 } \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.