Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.1 Integration by Parts - Exercises - Page 395: 25

Answer

$$\int arccos\,x\,dx=x\,arccos\,x-\sqrt{1-x^{2}}+C$$

Work Step by Step

${(x\,arccos\,x)}'=arccos\,x+\frac{x}{\sqrt{1-x^{2}}}$ $$\int arccos\,x\,dx=x\,arccos\,x+\int \frac{x}{\sqrt{1-x^{2}}}dx$$ $For\ \int \frac{x}{\sqrt{1-x^{2}}}dx,\ let\ x=sin\,t,dx=cos\,t\,dt.$ $$\int \frac{x}{\sqrt{1-x^{2}}}dx=\int \frac{sin\,t}{cos\,t}cos\,t\,dt$$ $$=-cos\,t+C=-\sqrt{1-x^{2}}+C$$ $$\int arccos\,x\,dx=x\,arccos\,x-\sqrt{1-x^{2}}+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.