Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.1 Integration by Parts - Exercises - Page 395: 26

Answer

$$\int arcsin\,x\,dx=x\,arcsin\,x+\sqrt{1-x^{2}}+C$$

Work Step by Step

${(x\,arcsin\,x)}'=arcsin\,x+\frac{x}{\sqrt{1-x^{2}}}$ $$\int arcsin\,x\,dx=x\,arcsin\,x- \int\frac{x}{\sqrt{1-x^{2}}}dx$$ $$=x\,arcsin\,x+\frac{1}{2}\int (1-x^{2})^{-\frac{1}{2}}d(1-x^{2})$$ $$=x\,arcsin\,x+(1-x^{2})^{\frac{1}{2}}+C$$ $$=x\,arcsin\,x+\sqrt{1-x^{2}}+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.