Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.1 Integration by Parts - Exercises - Page 395: 16

Answer

$$\frac{1}{5}[e^{x} \sin 2 x-2e^{x} \cos 2 x]+c$$

Work Step by Step

Given$$\int \sin 2 x e^{x} d x $$ Let \begin{align*} u&=\sin 2x\ \ \ \ \ \ \ \ \ dv= e^xdx\\ du&=2\cos 2x\ \ \ \ \ \ \ v= e^x \end{align*} Then \begin{aligned} \int \sin 2 x e^{x} d x &=(\sin 2 x)\left(e^{x}\right)-\int e^{x} 2 \cos 2 x d x \\ &=e^{x} \sin 2 x-2 \int \cos 2 x e^{x} d x \end{aligned} Let \begin{align*} u&=\cos 2x\ \ \ \ \ \ \ \ \ dv= e^xdx\\ du&=-2\sin 2x\ \ \ \ \ \ \ v= e^x \end{align*} Then \begin{aligned} \int \cos 2 x e^{x} d x &=\cos 2 x\left(e^{x}\right)-\int e^{x}(-2 \sin 2 x) d x \\ &=e^{x} \cos 2 x+2 \int e^{x} \sin 2 x d x \end{aligned} Hence \begin{aligned} \int \sin 2 x e^{x} d x &=(\sin 2 x)\left(e^{x}\right)-\int e^{x} 2 \cos 2 x d x \\ &=e^{x} \sin 2 x-2e^{x} \cos 2 x-4 \int e^{x} \sin 2 x d x \\ 5\int \sin 2 x e^{x} d x&=e^{x} \sin 2 x-2e^{x} \cos 2 x+c\\ \int \sin 2 x e^{x} d x&=\frac{1}{5}[e^{x} \sin 2 x-2e^{x} \cos 2 x]+c \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.