Answer
$$\int x\,cos4x\,dx=\frac{x\,sin4x}{4}+ \frac{cos4x}{16}$$
Work Step by Step
$${(\frac{x\,sin4x}{4})}'=\frac{sin4x}{4}+x\,cos4x$$
$$\int x\,cos4x\,dx=\frac{x\,sin4x}{4}-\int \frac{sin4x}{4}dx$$
$$=\frac{x\,sin4x}{4}+ \frac{cos4x}{16}$$
You can help us out by revising, improving and updating this answer.
Update this answerAfter you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.