Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.1 Integration by Parts - Exercises - Page 395: 34

Answer

\begin{aligned} \int \sinh ^{-1} x \ dx=x\sinh ^{-1} x- \sqrt{x^2+1} +C\\ \end{aligned}

Work Step by Step

Given $$\int \sinh ^{-1} x \ dx $$ Use integration by parts:$$ u=\sinh ^{-1} x \Rightarrow du= \frac{1}{\sqrt{x^2+1}}dx $$ $$ dv= dx \Rightarrow v=x $$ So, we get \begin{aligned} I&=\int \sinh ^{-1} x \ dx\\ &=uv- \int vdu\\ &=x\sinh ^{-1} x- \int \frac{x}{\sqrt{x^2+1}}dx\\ & =x\sinh ^{-1} x-\frac{1}{2} \int \frac{2x}{\sqrt{x^2+1}}dx\\ & =x\sinh ^{-1} x-\frac{1}{2} \int 2x (x^2+1)^{-\frac{1}{2}}dx\\ & =x\sinh ^{-1} x- (x^2+1)^{\frac{1}{2}} +C\\ & =x\sinh ^{-1} x- \sqrt{x^2+1} +C\\ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.