Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.8 Hyperbolic Functions And Hanging Cables - Exercises Set 6.8 - Page 481: 43

Answer

$${\tanh ^{ - 1}}\left( {\frac{1}{2}} \right)$$

Work Step by Step

$$\eqalign{ & \int_0^{1/2} {\frac{{dx}}{{1 - {x^2}}}} \cr & {\text{find the antiderivarive using the theorem 6}}{\text{.8}}{\text{.6 }}\left( {{\text{see page 480}}} \right) \cr & \int {\frac{{du}}{{{a^2} - {u^2}}}} = {\tanh ^{ - 1}}\left( {\frac{u}{a}} \right) + C \cr & \cr & \int_0^{1/2} {\frac{{dx}}{{1 - {x^2}}}} = \left. {\left( {{{\tanh }^{ - 1}}\left( {\frac{x}{1}} \right)} \right)} \right|_0^{1/2} \cr & = \left. {\left( {{{\tanh }^{ - 1}}\left( x \right)} \right)} \right|_0^{1/2} \cr & {\text{part 1 of fundamental theorem of calculus}} \cr & = {\tanh ^{ - 1}}\left( {\frac{1}{2}} \right) - {\tanh ^{ - 1}}\left( 0 \right) \cr & {\text{simplifiyng}} \cr & = {\tanh ^{ - 1}}\left( {\frac{1}{2}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.