Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.8 Hyperbolic Functions And Hanging Cables - Exercises Set 6.8 - Page 481: 20

Answer

$$y' = - \frac{1}{{x\sqrt {{x^2} + 1} }}$$

Work Step by Step

$$\eqalign{ & y = {\sinh ^{ - 1}}\left( {\frac{1}{x}} \right) \cr & {\text{find the derivatvive}} \cr & y' = \left( {{{\sinh }^{ - 1}}\left( {\frac{1}{x}} \right)} \right)' \cr & {\text{use the theorem 6}}{\text{.8}}{\text{.5 }}\left( {{\text{ see page 479}}} \right){\text{ }} \cr & \frac{d}{{dx}}\left[ {{{\sinh }^{ - 1}}u} \right] = \frac{1}{{\sqrt {1 + {u^2}} }}\frac{{du}}{{dx}} \cr & y' = \frac{1}{{\sqrt {1 + {{\left( {1/x} \right)}^2}} }}\left( {\frac{1}{x}} \right)' \cr & y' = \frac{1}{{\sqrt {1 + {{\left( {1/x} \right)}^2}} }}\left( { - \frac{1}{{{x^2}}}} \right) \cr & {\text{simplifying}} \cr & y' = - \frac{1}{{{x^2}}}\frac{1}{{\sqrt {\frac{{{x^2} + 1}}{{{x^2}}}} }} \cr & y' = - \frac{1}{{{x^2}}}\frac{1}{{\frac{{\sqrt {{x^2} + 1} }}{x}}} \cr & y' = - \frac{1}{{x\sqrt {{x^2} + 1} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.