Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.8 Hyperbolic Functions And Hanging Cables - Exercises Set 6.8 - Page 481: 36

Answer

$$\ln \left( {\frac{3}{5}} \right)$$

Work Step by Step

$$\eqalign{ & \int_0^{\ln 3} {\frac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}}} dx \cr & {\text{hyperbolic identity }}\tanh x = \frac{{\sinh x}}{{\cosh x}} = \frac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}} \cr & = \int_0^{\ln 3} {\frac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}}} dx = \int_0^{\ln 3} {\frac{{\sinh x}}{{\cosh x}}} dx \cr & {\text{find the antiderivative}} \cr & = \left. {\left( {\ln \cosh x} \right)} \right|_0^{\ln 3} \cr & {\text{part 1 of fundamental theorem of calculus}} \cr & = - \left( {\ln \cosh \left( {\ln 3} \right) - \ln \cosh 0} \right) \cr & {\text{simplifiyng}} \cr & = - \left( {\ln \left( {\frac{5}{3}} \right) - \ln \left( 1 \right)} \right) \cr & = - \ln \left( {\frac{5}{3}} \right) \cr & = \ln \left( {\frac{3}{5}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.