Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.8 Hyperbolic Functions And Hanging Cables - Exercises Set 6.8 - Page 481: 14

Answer

$$y' = - 2{e^{2x}}\operatorname{sech} \left( {{e^{2x}}} \right)\tanh \left( {{e^{2x}}} \right)$$

Work Step by Step

$$\eqalign{ & y = \operatorname{sech} \left( {{e^{2x}}} \right) \cr & {\text{find the derivatvive}} \cr & y' = \left[ {\operatorname{sech} \left( {{e^{2x}}} \right)} \right]' \cr & {\text{use the theorem 6}}{\text{.8}}{\text{.3 }}\left( {{\text{ see page 476}}} \right) \cr & \frac{d}{{dx}}\left[ {\operatorname{sech} \left( {{e^{2x}}} \right)} \right] = - \operatorname{sech} u\tanh u\frac{{du}}{{dx}} \cr & y' = - \operatorname{sech} \left( {{e^{2x}}} \right)\tanh \left( {{e^{2x}}} \right)\left( {{e^{2x}}} \right)' \cr & y' = - \operatorname{sech} \left( {{e^{2x}}} \right)\tanh \left( {{e^{2x}}} \right)\left( {2{e^{2x}}} \right) \cr & {\text{simplifying}} \cr & y' = - 2{e^{2x}}\operatorname{sech} \left( {{e^{2x}}} \right)\tanh \left( {{e^{2x}}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.