Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.8 Hyperbolic Functions And Hanging Cables - Exercises Set 6.8 - Page 481: 21

Answer

$$y' = \frac{1}{{\sqrt {{x^2} - 1} {{\cosh }^{ - 1}}x}}$$

Work Step by Step

$$\eqalign{ & y = \ln \left( {{{\cosh }^{ - 1}}x} \right) \cr & {\text{find the derivatvive}} \cr & y' = \left( {\ln \left( {{{\cosh }^{ - 1}}x} \right)} \right)' \cr & y' = \frac{{\left( {{{\cosh }^{ - 1}}x} \right)'}}{{{{\cosh }^{ - 1}}x}} \cr & y' = \frac{1}{{{{\cosh }^{ - 1}}x}}\left( {{{\cosh }^{ - 1}}x} \right)' \cr & {\text{use the theorem 6}}{\text{.8}}{\text{.5 }}\left( {{\text{ see page 479}}} \right){\text{ }} \cr & \frac{d}{{dx}}\left[ {{{\cosh }^{ - 1}}u} \right] = \frac{1}{{\sqrt {{u^2} - 1} }}\frac{{du}}{{dx}} \cr & y' = \frac{1}{{{{\cosh }^{ - 1}}x}}\left( {\frac{1}{{\sqrt {{x^2} - 1} }}} \right)\left( x \right)' \cr & y' = \frac{1}{{{{\cosh }^{ - 1}}x}}\left( {\frac{1}{{\sqrt {{x^2} - 1} }}} \right)\left( 1 \right) \cr & {\text{simplifying}} \cr & y' = \frac{1}{{\sqrt {{x^2} - 1} {{\cosh }^{ - 1}}x}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.