Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.8 Hyperbolic Functions And Hanging Cables - Exercises Set 6.8 - Page 481: 11

Answer

$$y' = - \frac{{{{\operatorname{csch} }^2}\left( {\ln x} \right)}}{x}$$

Work Step by Step

$$\eqalign{ & y = \coth \left( {\ln x} \right) \cr & {\text{find the derivatvive}} \cr & y' = \left[ {\coth \left( {\ln x} \right)} \right]' \cr & {\text{use the theorem 6}}{\text{.8}}{\text{.3 }}\left( {{\text{ see page 476}}} \right){\text{ }} \cr & \frac{d}{{dx}}\left[ {\coth u} \right] = - {\operatorname{csch} ^2}u\frac{{du}}{{dx}} \cr & y' = - {\operatorname{csch} ^2}\left( {\ln x} \right)\left[ {\ln x} \right]' \cr & y' = - {\operatorname{csch} ^2}\left( {\ln x} \right)\left( {\frac{1}{x}} \right) \cr & {\text{simplifying}} \cr & y' = - \frac{{{{\operatorname{csch} }^2}\left( {\ln x} \right)}}{x} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.