Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.8 Hyperbolic Functions And Hanging Cables - Exercises Set 6.8 - Page 481: 29

Answer

$$ = \frac{{{{\sinh }^7}x}}{7} + C$$

Work Step by Step

$$\eqalign{ & \int {{{\sinh }^6}x\cosh xdx} \cr & {\text{substitute }}u = \sinh x,{\text{ }}du = \cosh xdx \cr & = \int {{{\sinh }^6}x\cosh xdx} = \int {{u^6}du} \cr & {\text{find the antiderivarive by the power rule}} \cr & = \frac{{{u^7}}}{7} + C \cr & {\text{write in terms of }}x \cr & = \frac{{{{\left( {\sinh x} \right)}^7}}}{7} + C \cr & = \frac{{{{\sinh }^7}x}}{7} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.