Answer
$$ = \frac{{{{\sinh }^7}x}}{7} + C$$
Work Step by Step
$$\eqalign{
& \int {{{\sinh }^6}x\cosh xdx} \cr
& {\text{substitute }}u = \sinh x,{\text{ }}du = \cosh xdx \cr
& = \int {{{\sinh }^6}x\cosh xdx} = \int {{u^6}du} \cr
& {\text{find the antiderivarive by the power rule}} \cr
& = \frac{{{u^7}}}{7} + C \cr
& {\text{write in terms of }}x \cr
& = \frac{{{{\left( {\sinh x} \right)}^7}}}{7} + C \cr
& = \frac{{{{\sinh }^7}x}}{7} + C \cr} $$