Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.8 Hyperbolic Functions And Hanging Cables - Exercises Set 6.8 - Page 481: 28

Answer

$$y' = - 10{\left( {1 + x{{\operatorname{csch} }^{ - 1}}x} \right)^9}\left( {\frac{1}{{\sqrt {1 + {x^2}} }} - {{\operatorname{csch} }^{ - 1}}x} \right)$$

Work Step by Step

$$\eqalign{ & y = {\left( {1 + x{{\operatorname{csch} }^{ - 1}}x} \right)^{10}} \cr & {\text{find the derivatvive}} \cr & y' = \left( {{{\left( {1 + x{{\operatorname{csch} }^{ - 1}}x} \right)}^{10}}} \right)' \cr & {\text{chain rule}} \cr & y' = 10{\left( {1 + x{{\operatorname{csch} }^{ - 1}}x} \right)^{10 - 1}}\left( {1 + x{{\operatorname{csch} }^{ - 1}}x} \right)' \cr & y' = 10{\left( {1 + x{{\operatorname{csch} }^{ - 1}}x} \right)^9}\left( {1 + x{{\operatorname{csch} }^{ - 1}}x} \right)' \cr & {\text{product rule for }}x{\operatorname{csch} ^{ - 1}}x \cr & y' = 10{\left( {1 + x{{\operatorname{csch} }^{ - 1}}x} \right)^9}\left( {x\left( {{{\operatorname{csch} }^{ - 1}}x} \right)' + {{\operatorname{csch} }^{ - 1}}x\left( x \right)'} \right) \cr & {\text{use the theorem 6}}{\text{.8}}{\text{.5 }}\left( {{\text{ see page 479}}} \right){\text{ }} \cr & \frac{d}{{dx}}\left[ {{{\operatorname{csch} }^{ - 1}}u} \right] = - \frac{1}{{\left| u \right|\sqrt {1 + {u^2}} }}\frac{{du}}{{dx}} \cr & y' = 10{\left( {1 + x{{\operatorname{csch} }^{ - 1}}x} \right)^9}\left( {x\left( { - \frac{1}{{\left| x \right|\sqrt {1 + {x^2}} }}} \right) + {{\operatorname{csch} }^{ - 1}}x\left( 1 \right)} \right) \cr & {\text{simplifying}} \cr & y' = 10{\left( {1 + x{{\operatorname{csch} }^{ - 1}}x} \right)^9}\left( { - \frac{1}{{\sqrt {1 + {x^2}} }} + {{\operatorname{csch} }^{ - 1}}x} \right) \cr & y' = - 10{\left( {1 + x{{\operatorname{csch} }^{ - 1}}x} \right)^9}\left( {\frac{1}{{\sqrt {1 + {x^2}} }} - {{\operatorname{csch} }^{ - 1}}x} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.