Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.8 Hyperbolic Functions And Hanging Cables - Exercises Set 6.8 - Page 481: 27

Answer

$$y' = - \frac{{{e^x}}}{{2x\sqrt {1 - x} }} + {e^x}{\operatorname{sech} ^{ - 1}}\sqrt x $$

Work Step by Step

$$\eqalign{ & y = {e^x}{\operatorname{sech} ^{ - 1}}\sqrt x \cr & {\text{find the derivatvive}} \cr & y' = \left( {{e^x}{{\operatorname{sech} }^{ - 1}}\sqrt x } \right)' \cr & {\text{product rule}} \cr & y' = {e^x}\left( {{{\operatorname{sech} }^{ - 1}}\sqrt x } \right)' + {\operatorname{sech} ^{ - 1}}\sqrt x \left( {{e^x}} \right)' \cr & {\text{use the theorem 6}}{\text{.8}}{\text{.5 }}\left( {{\text{ see page 479}}} \right){\text{ }} \cr & \frac{d}{{dx}}\left[ {{{\operatorname{sech} }^{ - 1}}u} \right] = - \frac{1}{{u\sqrt {1 - {u^2}} }}\frac{{du}}{{dx}} \cr & y' = {e^x}\left( { - \frac{1}{{\sqrt x \sqrt {1 - {{\left( {\sqrt x } \right)}^2}} }}} \right)\left( {\sqrt x } \right)' + {\operatorname{sech} ^{ - 1}}\sqrt x \left( {{e^x}} \right) \cr & y' = {e^x}\left( { - \frac{1}{{\sqrt x \sqrt {1 - x} }}} \right)\left( {\frac{1}{{2\sqrt x }}} \right) + {e^x}{\operatorname{sech} ^{ - 1}}\sqrt x \cr & {\text{simplifying}} \cr & y' = {e^x}\left( { - \frac{1}{{2x\sqrt {1 - x} }}} \right) + {e^x}{\operatorname{sech} ^{ - 1}}\sqrt x \cr & y' = - \frac{{{e^x}}}{{2x\sqrt {1 - x} }} + {e^x}{\operatorname{sech} ^{ - 1}}\sqrt x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.