Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.8 Hyperbolic Functions And Hanging Cables - Exercises Set 6.8 - Page 481: 35

Answer

$$\frac{{37}}{{375}}$$

Work Step by Step

$$\eqalign{ & \int_{\ln 2}^{\ln 3} {\tanh x{{\operatorname{sech} }^3}x} dx \cr & {\text{split}} \cr & \int_{\ln 2}^{\ln 3} {sec{h^2}x\tanh x\operatorname{sech} x} dx \cr & {\text{substitute }}u = \operatorname{sech} x,{\text{ }}du = - \operatorname{sech} x\tanh xdx \cr & {\text{With this substitution}}{\text{,}} \cr & {\text{if }}x = \ln 2,{\text{ }}u = \operatorname{sech} \left( {\ln 2} \right) = 4/5 \cr & {\text{if }}x = \ln 3,{\text{ }}u = \operatorname{sech} \left( {\ln 3} \right) = 3/5 \cr & {\text{so}} \cr & \int_{\ln 2}^{\ln 3} {sec{h^2}x\tanh x\operatorname{sech} x} dx = - \int_{4/5}^{3/5} {{u^2}} du \cr & {\text{find the antiderivative}} \cr & = - \left. {\left( {\frac{{{u^3}}}{3}} \right)} \right|_{4/5}^{3/5} \cr & {\text{part 1 of fundamental theorem of calculus}} \cr & = - \left( {\frac{{{{\left( {3/5} \right)}^3}}}{3} - \frac{{{{\left( {4/5} \right)}^3}}}{3}} \right) \cr & = \frac{{37}}{{375}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.