Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.8 Hyperbolic Functions And Hanging Cables - Exercises Set 6.8 - Page 481: 23

Answer

$$y' = \frac{1}{{\left( {{x^2} - 1} \right){{\left( {{{\tanh }^{ - 1}}x} \right)}^2}}}$$

Work Step by Step

$$\eqalign{ & y = \frac{1}{{{{\tanh }^{ - 1}}x}} \cr & {\text{write with positive exponent}}{\text{, recall }}\frac{1}{{{z^n}}} = {z^{ - n}} \cr & y = {\left( {{{\tanh }^{ - 1}}x} \right)^{ - 1}} \cr & {\text{find the derivatvive by using the chain rule}} \cr & y' = - {\left( {{{\tanh }^{ - 1}}x} \right)^{ - 2}}\left( {{{\tanh }^{ - 1}}x} \right)' \cr & {\text{use the theorem 6}}{\text{.8}}{\text{.5 }}\left( {{\text{ see page 479}}} \right){\text{ }} \cr & \frac{d}{{dx}}\left[ {{{\tan }^{ - 1}}u} \right] = \frac{1}{{1 - {u^2}}}\frac{{du}}{{dx}} \cr & y' = - {\left( {{{\tanh }^{ - 1}}x} \right)^{ - 2}}\left( {\frac{1}{{1 - {x^2}}}} \right) \cr & {\text{simplifying}} \cr & y' = {\left( {{{\tanh }^{ - 1}}x} \right)^{ - 2}}\left( {\frac{1}{{{x^2} - 1}}} \right) \cr & y' = \frac{1}{{\left( {{x^2} - 1} \right){{\left( {{{\tanh }^{ - 1}}x} \right)}^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.