Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.8 Hyperbolic Functions And Hanging Cables - Exercises Set 6.8 - Page 481: 31

Answer

$$ = \frac{2}{3}{\left( {\tanh x} \right)^{3/2}} + C$$

Work Step by Step

$$\eqalign{ & \int {\sqrt {\tanh x} {{\operatorname{sech} }^2}x} dx \cr & {\text{substitute }}u = \tanh x,{\text{ }}du = {\operatorname{sech} ^2}xdx \cr & = \int {\sqrt {\tanh x} {{\operatorname{sech} }^2}x} dx = \int {\sqrt u du} \cr & = \int {{u^{1/2}}du} \cr & {\text{find the antiderivarive using the power rule}} \cr & = \frac{{{u^{3/2}}}}{{3/2}} + C \cr & = \frac{2}{3}{u^{3/2}} + C \cr & {\text{write in terms of }}x \cr & = \frac{2}{3}{\left( {\tanh x} \right)^{3/2}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.