Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.8 Hyperbolic Functions And Hanging Cables - Exercises Set 6.8 - Page 481: 42

Answer

$$ - \frac{1}{3}{\cosh ^{ - 1}}\left( {\frac{{3x}}{5}} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{\sqrt {9{x^2} - 25} }}} \cr & or \cr & = \int {\frac{{dx}}{{\sqrt {{{\left( {3x} \right)}^2} - {{\left( 5 \right)}^2}} }}} \cr & {\text{substitute }}u = 3x,{\text{ }}du = 3dx,{\text{ }}a = 5 \cr & = \int {\frac{{dx}}{{\sqrt {{{\left( {3x} \right)}^2} - {{\left( 5 \right)}^2}} }}} = \int {\frac{{\left( {1/3} \right)du}}{{\sqrt {{u^2} - {a^2}} }}} \cr & = \frac{1}{3}\int {\frac{{du}}{{\sqrt {{u^2} - {a^2}} }}} \cr & {\text{find the antiderivarive using the theorem 6}}{\text{.8}}{\text{.6 }}\left( {{\text{see page 480}}} \right) \cr & = - \frac{1}{3}{\cosh ^{ - 1}}\left( {\frac{u}{a}} \right) + C \cr & {\text{write in terms of }}x \cr & = - \frac{1}{3}{\cosh ^{ - 1}}\left( {\frac{{3x}}{5}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.