Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.8 Hyperbolic Functions And Hanging Cables - Exercises Set 6.8 - Page 481: 41

Answer

$$ - {\operatorname{csch} ^{ - 1}}\left| {2x} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{x\sqrt {1 + 4{x^2}} }}} \cr & {\text{substitute }}u = 2x,{\text{ }}du = 2dx \cr & = \int {\frac{{dx}}{{x\sqrt {1 + 4{x^2}} }}} = \int {\frac{{\left( {1/2} \right)du}}{{\left( {u/2} \right)\sqrt {1 + {u^2}} }}} \cr & = \int {\frac{{du}}{{u\sqrt {1 + {u^2}} }}} \cr & {\text{find the antiderivarive using the theorem 6}}{\text{.8}}{\text{.6 }}\left( {{\text{see page 480}}} \right) \cr & = - {\operatorname{csch} ^{ - 1}}\left| u \right| + C \cr & {\text{write in terms of }}x \cr & = - {\operatorname{csch} ^{ - 1}}\left| {2x} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.