Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.8 Hyperbolic Functions And Hanging Cables - Exercises Set 6.8 - Page 481: 30

Answer

$$ = \frac{1}{2}\sinh \left( {2x - 3} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\cosh \left( {2x - 3} \right)} dx \cr & {\text{substitute }}u = 2x - 3,{\text{ }}du = 2dx \cr & = \int {\cosh \left( {2x - 3} \right)} dx = \frac{1}{2}\int {\cosh udu} \cr & {\text{find the antiderivarive using the theorem 6}}{\text{.8}}{\text{.3 }}\left( {{\text{see page 476}}} \right) \cr & = \frac{1}{2}\sinh u + C \cr & {\text{write in terms of }}x \cr & = \frac{1}{2}\sinh \left( {2x - 3} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.