Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.8 Hyperbolic Functions And Hanging Cables - Exercises Set 6.8 - Page 481: 17

Answer

$$y' = {x^{5/2}}\tanh \sqrt x {\operatorname{sech} ^2}\sqrt x + 3{x^2}{\tanh ^2}\sqrt x $$

Work Step by Step

$$\eqalign{ & y = {x^3}{\tanh ^2}\left( {\sqrt x } \right) \cr & {\text{find the derivatvive}} \cr & y' = \left( {{x^3}{{\tanh }^2}\left( {\sqrt x } \right)} \right)' \cr & {\text{product rule}} \cr & y' = {x^3}\left( {{{\tanh }^2}\left( {\sqrt x } \right)} \right)' + {\tanh ^2}\left( {\sqrt x } \right)\left( {{x^3}} \right)' \cr & {\text{chain rule}} \cr & y' = {x^3}\left( {2\tanh \sqrt x } \right)\left( {\tanh \sqrt x } \right)' + {\tanh ^2}\left( {\sqrt x } \right)\left( {{x^3}} \right)' \cr & {\text{use the theorem 6}}{\text{.8}}{\text{.3 }}\left( {{\text{ see page 476}}} \right){\text{ }} \cr & \frac{d}{{dx}}\left[ {\tanh u} \right] = {\operatorname{sech} ^2}u\frac{{du}}{{dx}} \cr & y' = {x^3}\left( {2\tanh \sqrt x } \right)\left( {{{\operatorname{sech} }^2}\sqrt x } \right)\left( {\sqrt x } \right)' + {\tanh ^2}\left( {\sqrt x } \right)\left( {{x^3}} \right)' \cr & y' = {x^3}\left( {2\tanh \sqrt x } \right)\left( {{{\operatorname{sech} }^2}\sqrt x } \right)\left( {\frac{1}{{2\sqrt x }}} \right) + {\tanh ^2}\left( {\sqrt x } \right)\left( {3{x^2}} \right) \cr & {\text{simplifying}} \cr & y' = {x^{5/2}}\tanh \sqrt x {\operatorname{sech} ^2}\sqrt x + 3{x^2}{\tanh ^2}\sqrt x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.