Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.8 Hyperbolic Functions And Hanging Cables - Exercises Set 6.8 - Page 481: 33

Answer

$$\ln \left( {\cosh x} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\tanh x} dx \cr & {\text{hyperbolic identity tanh}}\phi = \frac{{\sinh \phi }}{{\cosh \phi }} \cr & = \int {\frac{{\sinh x}}{{\cosh x}}} dx \cr & {\text{substitute }}u = \cosh x,{\text{ }}du = \sinh xdx \cr & = \int {\frac{{\sinh x}}{{\cosh x}}} dx = \int {\frac{{du}}{u}} \cr & = \int {\frac{{du}}{u}} \cr & {\text{find the antiderivative}} \cr & = \ln \left| u \right| + C \cr & {\text{write in terms of }}x \cr & = \ln \left| {\cosh x} \right| + C \cr & \cosh x{\text{ is positive for all x}} \cr & = \ln \left( {\cosh x} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.