Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 8 - Section 8.3 - Quadratic Functions and Their Graphs - Exercise Set - Page 626: 43

Answer

(a.) Minimum. (b.) At $x=\frac{1}{2}$, minimum value is $-\frac{5}{4}$. (c.) Domain $=(-\infty,\infty)$. Range $=\left[-\frac{5}{4},\infty\right) $.

Work Step by Step

The given function is a quadratic function: $f(x)=5x^2-5x$ The standard form of the quadratic function is $f(x)=ax^2+bx+c$ $a=5,b=-5$ and $c=0$ (a.) Because $a>0$, the function has a minimum value. (b.) $x-$coordinate at which minimum value occurs is $x=-\frac{b}{2a}$. Substitute all values. $x=-\frac{(-5)}{2(5)}$. Simplify. $x=\frac{1}{2}$. Substitute the value of $x$ into the given function. $f\left(\frac{1}{2}\right)=5\left(\frac{1}{2}\right)^2-5\left(\frac{1}{2}\right)$ Simplify. $f\left(\frac{1}{2}\right)=\frac{5}{4}-\frac{5}{2}$ The LCD is $4$. Multiply the numerator and the denominator to form LCD at the denominator. $f\left(\frac{1}{2}\right)=\frac{5}{4}-\frac{10}{4}$ Add numerators. $f(\frac{1}{2})=\frac{5-10}{4}$ Simplify. $f\left(\frac{1}{2}\right)=-\frac{5}{4}$ (c.) Domain is all possible input values. Domain $=(-\infty,\infty)$. Range is all possible output values. Minimum value is $-\frac{5}{4}$. Range $=\left[-\frac{5}{4},\infty\right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.