Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 8 - Section 8.3 - Quadratic Functions and Their Graphs - Exercise Set - Page 626: 26

Answer

The graph is shown below. Range $(-\infty,1]$.

Work Step by Step

Rearrange the given function. $f(x)=-(x-3)^2+1$ The standard form of the parabola is $f(x)=a(x-h)^2+k$ Compare with the original given function. $a=-1,h=3$ and $k=1$ Step 1:- Parabola opens. $a<0$, The parabola opens downward. Step 2:- Vertex. The value of $h=3$ and $k=1$. The vertex is $(h,k)=(3,1)$. Step 3:- $x-$intercepts. Replace $f(x)$ with $0$. $\Rightarrow 0=-(x-3)^2+1$ Add $(x-3)^2$ to both sides. $\Rightarrow 0+(x-3)^2=-(x-3)^2+1+(x-3)^2$ Simplify. $\Rightarrow (x-3)^2=1$ Apply the square root property. $\Rightarrow x-3=\sqrt{1}$ or $x-3=-\sqrt{1}$ Simplify. $\Rightarrow x-3=1$ or $x-3=-1$ Add $3$ to both sides in each equation. $\Rightarrow x-3+3=1+3$ or $x-3+3=-1+3$ Simplify. $\Rightarrow x=4$ or $x=2$ Hence, the $x-$intercepts are $4$ and $2$. The parabola passes through $(4,0)$ and $(2,0)$. Step 4:- $y-$intercept. Replace $x$ with $0$. $\Rightarrow f(0)=-(0-3)^2+1$ Simplify. $\Rightarrow f(0)=-9+1$ Simplify. $\Rightarrow f(0)=-8$ Hence, the $y-$intercept is $-8$. The parabola passes through $(0,-8)$. Step 5:- Graph. Use the points vertex, $x-$intercepts and $y-$intercept to draw a parabola. The axis of symmetry is $x=h=3$. $A=(3,1)$ $B=(4,0)$ $C=(2,0)$ $D=(0,-8)$. From the graph the range of the function is $(-\infty,1]$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.