Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 8 - Section 8.3 - Quadratic Functions and Their Graphs - Exercise Set - Page 626: 30

Answer

The graph is shown below. Range $\left[-\frac{81}{8},\infty\right)$.

Work Step by Step

The given function is a quadratic function: $f(x)=2x^2-7x-4$ The standard form of the quadratic function is $f(x)=ax^2+bx+c$ Compare both equations $a=2,b=-7$ and $c=-4$. Step 1:- Parabola opens. $a>0$, the parabola open upward. Step 2:- Vertex. $x-$coordinate of the vertex is $x=-\frac{b}{2a}=-\frac{(-7)}{2(2)}=\frac{7}{4}$. Substitute the value of $x$ into the function. $\Rightarrow f(\frac{7}{4})=2(\frac{7}{4})^2-7(\frac{7}{4})-4$ Simplify. $\Rightarrow f(\frac{7}{4})=\frac{49}{8}-\frac{49}{4}-4$ The LCD is $8$. Multiply the numerator and the denominator to form LCD at the denominator. $\Rightarrow f(\frac{7}{4})=\frac{49}{8}-\frac{98}{8}-\frac{32}{8}$ Add all numerators. $\Rightarrow f(\frac{7}{4})=\frac{49-98-32}{8}$ Simplify. $\Rightarrow f(\frac{7}{4})=-\frac{81}{8}$ The vertex is $\left(\frac{7}{4},-\frac{81}{8}\right)$. Step 3:- $x-$intercepts. Replace $f(x)$ with $0$ into the given function. $\Rightarrow 0=2x^2-7x-4$ Use quadratic formula, we have $a=2,b=-7$ and $c=-4$. $\Rightarrow x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ Substitute all values. $\Rightarrow x=\frac{-(-7)\pm\sqrt{(-7)^2-4(2)(-4)}}{2(2)}$ Simplify. $\Rightarrow x=\frac{7\pm\sqrt{49+32}}{4}$ $\Rightarrow x=\frac{7\pm\sqrt{81}}{4}$ $\Rightarrow x=\frac{7\pm9}{4}$ Separate the fractions. $\Rightarrow x=\frac{7+9}{4}$ or $ \frac{7-9}{4}$ Simplify. $\Rightarrow x=\frac{16}{4}$ or $ x=\frac{-2}{4}$ $\Rightarrow x=4$ or $ x=-\frac{1}{2}$ The $x-$intercepts are $4$ and $-\frac{1}{2}$. The parabola passes through $(4,0)$ and $\left(-\frac{1}{2},0\right)$. Step 4:- $y-$intercept. Replace $x$ with $0$ in the given function. $\Rightarrow f(0)=2(0)^2-7(0)-4$ Simplify. $\Rightarrow f(0)=-4$ The $y-$intercept is $-4$. The parabola passes through $(0,-4)$. Step 5:- Graph. Use the points:- vertex, $x-$intercepts and $y-$intercept to draw a parabola. The axis of symmetry is $x=-\frac{3}{2}$. $A=\left(\frac{7}{4},-\frac{81}{8}\right)$ $B=(4,0)$ $C=\left(-\frac{1}{2},0\right)$ $D=(0,-4)$. From the graph the range of the function is $\left[-\frac{81}{8},\infty\right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.