Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 8 - Section 8.3 - Quadratic Functions and Their Graphs - Exercise Set - Page 626: 38

Answer

The graph is shown below. Range $[2,\infty)$.

Work Step by Step

The given function is a quadratic function: $f(x)=6-4x+x^2$ Rewrite as. $f(x)=x^2-4x+6$ The standard form of the quadratic function is $f(x)=ax^2+bx+c$ Compare both equations $a=1,b=-4$ and $c=6$. Step 1:- Parabola opens. $a>0$, the parabola open upward. Step 2:- Vertex. $x-$coordinate of the vertex is $x=-\frac{b}{2a}=-\frac{(-4)}{2(1)}=2$. Substitute the value of $x$ into the function. $\Rightarrow f(2)=(2)^2-4(2)+6$ Simplify. $\Rightarrow f(2)=4-8+6$ Simplify. $\Rightarrow f(2)=2$ The vertex is $(2,2)$. Step 3:- $x-$intercepts. Replace $f(x)$ with $0$ into the given function. $\Rightarrow 0=x^2-4x+6$ Use quadratic formula, we have $a=1,b=-4$ and $c=6$. $\Rightarrow x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ Substitute all values. $\Rightarrow x=\frac{-(-4)\pm\sqrt{(-4)^2-4(1)(6)}}{2(1)}$ Simplify. $\Rightarrow x=\frac{4\pm\sqrt{16-24}}{2}$ $\Rightarrow x=\frac{4\pm\sqrt{-8}}{2}$ The equation has imaginary solutions, there are no $x-$intercepts. Step 4:- $y-$intercept. Replace $x$ with $0$ in the given function. $\Rightarrow f(0)=(0)^2-4(0)+6$ Simplify. $\Rightarrow f(0)=6$ The $y-$intercept is $6$. The parabola passes through $(0,6)$. Step 5:- Graph. Use the points:- vertex, $x-$intercepts and $y-$intercept to draw a parabola. The axis of symmetry is $x=2$. $A=(2,2)$ $B=(0,6)$. From the graph the range of the function is $[2,\infty)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.